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MONOD’S BACTERIAL GROWTH MODEL REVISITED
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CNRS URA 243,
Laboratoire de Biométrie,
Université Claude Bernard,
43 Boulevard du 11 Novembre,
69622 Villeurbanne, France

(E-mail: DYNBACT (@ FRCISM51-(EARN))

An attempt to justify Monod’s bacterial growth model is presented. The justification is based on
a mechanistic approach to growth which leads to a differential equation with delay and then to
Monod’s model. An unexpected increase of parameter K, with y_, is predicted by the theory. A
survey of literature shows that this effect is present in a large majority of published data.

Introduction. Monod’s growth model (1941, 1949, 1950) was proposed as an
empirical model to describe microbial growth. It differs from classical growth
models, such as those proposed by Gompertz (1825), Verhulst (1845, 1847) or
Richards (1959), because it introduces the concept of a limiting nutrient. A
nutrient is said to be limiting when there is a causal relationship between its
exhaustion and the end of growth. This deterministic aspect of Monod’s model
may be one of the reasons for its success.

The model defines the relation between the growth rate and the concentra-
tion of the limiting nutrient:

dx s

s i 1
dt x‘u'“Ks+s 1)

where x is the microbial concentration (shortly the biomass) at time t, s is the
limiting nutrient (or substrate) concentration at time t, g is the maximum
specific growth rate, and K is the substrate concentration which supports
half-maximum specific growth rate. Units for biomass and substrate are of
various kinds, depending on the way growth is measured (Harris and Kell,
1985). The important features of the model are that the growth rate is zero
when there is no substrate and tends to an upper limit when the substrate is in
great excess, the link between these two extreme conditions being described by
a rectangular hyperbola.

This work is an attempt to justify Monod’s model from a mechanistic point
of view. First this attempt is presented and the unexpected prediction made
that an increase of parameter K, with p,, should be observed. Secondly we
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present arguments supporting the theory with a reconsideration of published
data, and then a discussion of the biological significance of parameters.

Theory. Consider that microbial cells and substrate are subject to Brownian
motion so that they are randomly moving in the medium and from time to time
came into collision. In idealized conditions it follows that the rate of growth is
proportional to the product of biomass and substrate concentration:

e kxs (2)
where k is analogous to the rate constant of a chemical reaction. Note,
however, that we are not dealing with a chemical reaction because biomass is
not a chemically defined compound. This is the reason for requiring idealized
conditions which are: that biomass composition is constant: that the
contribution of substrate to biomass formation is constant; and that the ratio,
surface/volume, for microbial cells is constant at a population level.

The differential equation (2) corresponds to the well-known logistic
equation (Verhulst, 1845, 1848). The logistic model has been used extensively
for description of the growth of various biological materials. Although it was
created by Verhulst for human population growth modelling, and even
rediscovered by Pearl and Reed (1920) for the same purpose, some applications
to microbial growth have also been published (Richards, 1928; Mitsuhashi and
Takeuchi, 1951; Jason, 1983; Corman et al., 1986; Gibson et al., 1987:
Morrison et al., 1987; Comby et al., 1988; Rochet and Flandrois, 1989; Gould
et al., 1989; Zwietering et al., 1990). The essence of the logistic law is that the
growth rate is assumed to be proportional to the concentration of something
that is being used up as the population grows. When the limiting substrate
concentration is low, the logistic growth is a perfectly acceptable approxima-
tion.

The problem with equation (2) is that the growth rate can be increased
indefinitely by increasing the substrate concentration. This is quite an
undesirable property since it is well established that the growth rate cannot
exceed a certain limit. We must then modify equation (2) to take into account
this upper limit.

The main object of this paper is the consideration that the substrate-to-
biomass converion is not instantaneous. What happens after the substrate has
penetrated into a microbial cell is very complex: thousands of different specific
catalysed reactions and thousands of intermediary compounds are involved
(Neidhart et al., 1987). It seems then quite rational, from a biological point of
view, to take into account this notion of a delay for biomass production.
Therefore, a delay in biomass x is introduced, so that we obtain a differential
equation with a discrete lag time:
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E(%: kx(t—1)s (3)

where 7 is the lag time for biomass production. Note that we have introduced a
lag time in one variable only because there is a delay for biomass production
and not for substrate consumption.

Differential equations with delay are an interesting tool because lags are
omnipresent in biology (MacDonald, 1978). The problem is that these
equations are not convenient to handle, and only few general results are
available. This is the reason why we are going to transform equation (3) in the
form of an ordinary differential equation. For this we use an approximation
which consists of a Taylor expansion to express x(t —t) as function of x(t):

dx
,\(I—‘L’)R‘:X([)—‘Ea. (4)

With a simple combination of equations (3) and (4) we obtain:

dxm1>c S

m“11+
— S
kt

)

which is in fact Monod’s model as defined by equation (1) provided that we
have:

P =—
T
1 : (6)
I
Pt
S kr k

From examination of equation (6) an apparent linear increase of parameter
K, is expected to occur with parameter g, .

Summary and conclusions. As Monod’s model is very popular we have been
able to find published data where the parameter K, has been estimated for
different pu_ values. An apparent increase of K, with y_ is present in data
published by Knowles et al. (1965), Caperon (1967), Jones and Hough (1970),
Shelefet al. (1970), Muck and Grady (1974), Endo and Mochizuki (1979), Senft
et al. (1981). Mechling and Kilham (1982), Tilman et al. (1982), Billen (1984),
I[toh and Takahashi (1984), Simkins et al. (1986) and Billen and Servais (1989).
Anisolated decrease of K, with g, is observed by Topiwala and Sinclair (1971).

A point that must be underlined is that parameter estimates are almost

—

g

-q.

T



I!"'e!!? -

o

.

nAdc




120 J. R. LOBRY et al.

always reported without an indication of their confidence regions. As a
consequence, it is not possible to say whether the differences between
parameter values are significant or not. We have then to be very cautious in
interpreting the apparent increase of K with g_ . It is not possible to consider
that the expected relationship is experimentally assessed.

In conclusion, we can summarize the biological significance of parameters as
follows. The growth of a microbial population, for a given culture condition
set, Is characterized by parameters p, and K,. The interpretation of p_ is
straightforward. From equation (6) y,, is inversely related to the lag time which
is required to transform substrate into biomass. When this lag is short, the
growth is fast in the presence of an excess of substrate. The biological
significance of parameter K, is less obvious. By analogy with Briggs and
Haldane's (1925) justification of Michaelis—Menten’s (1913) model for enzyme
kinetics, the ratio 1/K, is sometimes interpreted as a reflection of an intrinsic
affinity of bacteria for the substrate. This seems dubious since K, values may
vary with g, Healey's proposal (1980) to take the ratio /K, as an indicator of
advantage in nutrient competition at low nutrient concentration is more
consistent with our results. From equation (6) the ratio x /K is in fact the rate
constant k, and then represents the competitivity of a microbial population at
low substrate concentration: the greater k is, the better the population grows at
low concentrations of limiting nutrient. Thus, Healey’s ratio is especially
relevant to characterize microbial populations because in natural ecosystems
limiting nutrient concentrations are very low.

This work was supported in part by a grant from API-SYSTEM, BioMérieux,
to J. R. Lobry. Constructive suggestions were received from referees.
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