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SUMMARY

The large scope of tools and competences to achie-
ve a modelling approach in biology leads to note that
classical simulation software products give only partial
solutions to this problem. The recent developments
of software designs lead to a new conception of computer
aided modelling systems. It is proposed to develop a
computer system based on these ideas. This system
would include knowledge about models and their handling
(mathematical properties, numerical and formal calculus
tools...), and also knowledge related to the domain of
application and to the modelling approach itself.

In this paper, we examine possible knowledge repre-
sentations and the choice of an object-centered one
based on frames concept. We discuss the use of schema-
tic descriptions to aid both model building and model
interpretation, -an example related to population dyna-
mics is presented. One notes a possible organization
of the knowledge based on schemes associated to models
of this application field.

INTRODUCTION

Mathematical representations of biological phenome-
na have been for a long time essentially devoted to
theoretical studies, and thus reserved to specialists:
some biologists and some mathematicians (or "bioma-
thematicians"). These last years a wide diffusion of
modelling approaches and uses of practical models have
been noted (1). Models are now considered as efficient
means to solve biological problems. These developments
have been strongly dependent on the extension of compu-
ter tools (2), especially numerical ones.

However, mathematical modelling in biology is
not a simple task. It requieres competences in many
domains, from mathematics and computer sciences

to biology, which are difficult to gain for a scientist,
or even to gather in a staff. Therefore a possible solution
to facilitate modelling approaches in life sciences might
be the use of adapted computer systems.

State Of The Art Solution =
Products

Classical Simulation Software

If we consider dynamics problems (for example,
biochemical kinetics, population dynamics...), it is well
known that a large number of computer systems have
been especially developed to assist the elaboration of
models based on differential or difference equations.
The trend in this field is to increase the capabilities
of these products through the introduction of various
methods, generally numerical ones such as identification,
numerical integration or tools for optimal control design.
Thus the number of available methods is becoming a
fundamental evaluation criterion to compare these sys-
tems : "“the best has the greatest number of methods".
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Because of their high costs of conception, these
computer systems are designed to be used by a large
set of potential users :

- then great advance are made in order 1o make
the system easily to operate :

- they do not have specific application domains.
CSMP or ACSL, for instance, can be operated as soon
as differential equations are implied in a modelling
problem in any domain of application. There are some
exceptions when specific description languages enable
to write a model in a symbolic form different from
mathematical expression (graphs, chemical like reactions,
compartmental diagrams...) (3)(4)(5). Often, such represen-
tations can only be considered as "“svntactic sugar"
in so far as, when the mathematical representation
is obtained, the first formalism and the associated seman-
tics disappear. -

The consequences of this evolution are paradoxical.
They become more easily accessible by users who do
not always possess the requested mathematical knowledge
and expertise. These users tend either to operate systema-
tically the same general-purpose costly method for
a given task (for example, a sophisticated integration
algorithm when a simple RK4 method is sufficient),
either to operate the same method among those available
in the system even it is not adapted to the problem
(for example, an ordinary least squares method for
identification when a weighted one would be more adap-
ted). Thus, at the best, the software is underemployed;
but more often it is ill employed leading to some erro-
neous results which remain undectected by a user who
is unable to interpret these results.

In summary, today, simulation and associated soft-
ware concern numerical approaches of phenomena and
need :

(i) a formal representation of the phenomenon
under study i.e. 'a mathematical model (for example
a set of differential equations),

(ii) procedures adapted to the numerical solving
of a problem related to this mathematical model (e.g.
numerical integration, parameter estimation from experi-
mental data...), —

(iii) user interfaces (command language, descrip-
tion language, graphical capabilities...),

but most of available software products do not take
into account :

(iv) the “good choice" of an algorithm,

(v) formal manipulations, such as symbolic differen-

tiation or symbolic solving of equations (to calculate

stationnary solutions, sensitivity functions...),



(vi) the known mathematical properties of a
model,

(vii) the connection with the application domain,
particularly

- for a given situation : to aid the choice and/or
the elaboration of a mathematical representation,

- conversely the interpretation of a mathematical
expression.

are often
and modify.

simulation
to extend,

classical
difficult

Finally,
voluminous,

systems
adapt

Toward A Solution : Expert System

It seems therefore opportune to develop a new
generation of computer aided modelling systems which
would incorporate knowledge on the available methods,
the manipulated objects such as equations, coefficients,
variables or time series and on the modelling process
itself. Part of this knowledge is domain specific and
cannot be frozen in one system. Moreover, new objects
and methods are to be added in a system. as advances
are made, for instance in numerical or statistical ana-
lysis. The necessity to incorporate an extensible know-
ledge base appears clearly (). Such needs were well
felt by Zeigler (7), who proposed an “organization of
questions and models", and also by Klir (8) and Sitha-
rama lyengar (9) who discussed about “computer systems
aided modelling".

Several knowledge representation methods exist,
among them production rules have been extensively
used in the so-called expert systems. However, produc-
tion rules are not adapted to the development of intelli-
gent systems where an important part of the knowledge
implied can exist only in procedural form. This is the
case of most scientific, numerical or non numerical,
and representation algorithms.

In the framework of the EDORA Club which ga-
thers various research laboratories in computer science,
mathematics and biology, a new computer-aided mode-
lling system is being developed using ordinary differential

and recurrence equations with applications in biology
(in a first time essentially population dynamics). A
specific knowledge representation .based on frames

(10) has been retained and refined. In the second section
the problems related to knowledge representation,
particularly frames, are discussed together with the
qualities and performances of this last representation.

Now as mentioned above, specific interface lan-
guages (i.e. description languages) may be defined to
aid both elaboration and interpretation of models. Howe-
ver the "syntactic sugar" aspect can be expanded to
maintain relations of the mathematical representations
with the domain of application thus to ensure some
semantic support. This can be done by defining the
direct translation algorithm (from schematic represen-
tation to mathematical formula), but also by proposing
a converse approach for translation, if possible, of
a mathematical formula in a schematic representation,in
order to assist the model interpretation. Both trans-
lation procedures and heuristics can ensure the connec-
tion between the “neutral® mathematical formalism
and the ‘"oriented" schematic representation. In the
third section we present an example of such a descrip-
tion tool, specifically a chemical like language associated
to models of population dynamics where a mathematical
expression can be associated with a "functional scheme"
(i.e. a pseudo-chemical reaction). Translation of schemes
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in mathematical equations is presented, and the converse
process is discussed as an aid to biological interpretation
of some models. Then we show that thinking about
the relations between schemes and models leads to
propose a hierarchical organization of this class of
models, namely Lotka-Volterra and related equations,
organization which can be examined in the framework
of a structured knowledge base.

KNOWLEDGE REPRESENTATION

A computer aided modelling system would be able
to manage simultaneously three kind of bases :

(i) 2 data and object base (for example, time
series obtained from experimental data, intermediate
or final results of computation, mathematical models...);

(ii) an algorithm base (e.g. integration procedures
for simulation, identification algorithms for parameter
estimation, formal manipulation capabilities such as
formal differentiation, ...) ;

(iii) a knowledge base : this base should contain
knowledge about the conditions of application of methods,
mathematical knowledge about formal objects, elements
on the interpretation in the domain of application (for
instance, population biology), and knowledge on the
modelling-analysis process itself.

Complete computer-aided modelling leads to multi-
ple inference processes operating on these bases. So
an appropriate representation is needed to facilitate
system management and the design of these inference
processes. Just two possible solutions are examined:
production rules and frames, the choice of the last
representation is explained and some ideas are given
about inference possibilities from these representations.

Production Rules

i Remember that a productién rule may be written
L1} x
IF condition THEN action

The first part (i.e. condition) is one or a list of
premises linked to facts. Truth of these facts is a priori
assumed as hypothesis or infered by using other rules
of the knowledge base.

In the right hand side, the most frequently encoun-
tered action is to add new facts when the rule is selec-

ted, that is when premises in the left hand side are
all verified.

Classically there are three exploitation modes
(or control strategies) of these rules : data driven,

goals driven and mixed stratepies according to the con-
text. Either one starts from known facts in order to
infer new ones, or goals are given and verification is
desired' by searching corresponding facts. In all cases
an inference engine is run, its algorithm consists princi-
pally in examining the state of the facts data base
and to select appropriate rules.

The advantages of this representation are today
well known, and are related to modularity of relevant
systems :

- a rule incorporates a small chunk of knowledge,

- it is theoretically independent of the others,

- communications between rules are ensured only
through the fact base.



Then developments and modifications of the know-
ledge base are easy. But, practically this modularity
is far from complete. Most often, to be efficient the
inference mechanism is governed by meta-rules (i.e.
rules describing the use of basic rules) or by some artifi-
cial means. Then the independence of rules is reduced
and it is no longer possible to modify or to add rules
without considering the entire knowledge base.

Computer _Aided Modelling Systems And Production
Rules Representation

An illustration of this approach can be found in
the paper of Swaan Arons (l12). The chosen example
consists to aid in model definition of a simple physical
situation : a mass coupled to a spiral spring. A priori
different hypotheses can be considered (for instance,
the relative importance of the mass relatively to that
of the spring one, existence, or not, of a friction stren-
gth, etc...). Among the twenty rules of the base, twelve
have in their right hand side the expression of the selec-
ted model. In fact, these rules define a hierarchic classifi-
cation of all known models of this simple system which
are specializations of a general model. At a given level
a model includes implicitely hypotheses of a less specific
one.

It appears particularly in this example, that these
notions of hierarchic classification and of context disap-
pear, by dispersion, in a production rules representation.
In addition this knowledge representation does not ensure
easily the representation of objects, i.e. models or me-
thods, the management and the coherence keeping of
the base.

Finally the important problem of integration of
a set of rules in a real computer aided modelling system
is not obvious to solve. When a model is specified it
is desirable to manipulate it (e.g. identification, numeri-
cal simulation...), therefore to access on the one hand
to representations which enable numerical and symbolical
manipulations, on the other hand to 1its mathematical
properties. If we consider this last problem, the properties
could be infered with rules, but if we examine the exam-
ple of the mass-spring .coupling, a model can be written
following the differential form :

F(t)

1 t
— f(x) = ™

x+ng+M

where F(1) describes the action of an external force.

The following rules distinguish two cases :

IF F(t) = 0 THEN the equation is homogeneous

IF F(t) # 0 THEN the equation is non-homogeneous

from which mathematical properties could be deduced.

However, such information are not new in so far
as they appear implicitly when a problem is formulated
in physical terms. In the example above, the fact that
the differential equation is homogeneous (resp. non-homo-
geneous) can be deduced immediately from the description
of the physical system, which is autonomous (resp. non-
autonomous). This description is obviously a previous
step before the choice of a mathematical model. This
example shows that a same object, i.e. a model, can
be considered following several points of view, here
a physical one and a mathematical one. Generally, diffe-
rent views are not independent (for example the descrip-
tion of the physical system leads to the choice of a
particular mathematical expression). Rules are not adap-
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ted to describe such situations.

In conclusion, an other type of knowledge represen-
tation which could take into account structured know-
ledge, different contexts and multiple points of view
would be a more adapted solution than production rules
representation in a computer aided modelling approach.
Among the actual representations it seems that an
object centered one could provide a good framework.

Objects-Centered Knowledge Representations

The concept of objects-centered representation
comes from two origins, independent at the beginning:

- the Minsky's work on a model of knowledge
representation of human perception system (13). He
defined the concept of frame, which is a data structure
representing a typical situation.

- the introduction by computer scientists, in their
own field, of the notion of object through the definition
and the development of "object oriented languages",
and of corresponding programming environments (for
instance, SIMULA and especially SMALLTALK (14)).

It is important to mention that, besides common
ideas, object-centered knowledge representation and
objet-centered programming are, in fact, distinct domains
of computer science. So, only the first aspect, related
to our problem, is examined in this paper.

The
knowledge

of
are

common characteristics
representation systems

objects-centered
the following:

(i) each object is an instance (i.e. a particular
J_ndividual) of a class or a family of objects. For example,
in population dynamics, the expression :

dx _
dt ~

is an instance of the general logistic model which can
be written

Ll x (1 - x(0) = 10

Iy
Too’

dx LI _
E:rx(ltﬁ) : x(O)fxo

(i) A class of objects is defined by its name
and the list of its slots. Knowledge is attached to each
slot, such as its value, or how to obtain this value if
it is not a priori known, or yet a default value. For
example, parameter values for the logistic model can
be obtained from experimental data, or default values
can be assigned to show a typical case (cf. table 2).

These classes are hierarchically organized, each
class in the hierarchy inherits knowledge attached to
the upper classes. The own knowledge attached to an
object is transmitted to lower classes in the hierarchy.

For example, in the hierarchy proposed in the
table 3 which attempts to describe relations between
some models of population dynamics, a common property
of these models is that the domain of values of state
variables is a domain of R%, because their biological
significances are populations sizes or densities. But
the corresponding mathematical objects defined in a
mathematical hierarchy will have generally a larger
definition domain.

(iii) Procedures can be attached to a slot (i.e.
procedural knowledge). Such procedures are called when
an action is wanted. For instance, the value of a slot
can be computed if it is not available. In the above
example, values of the parameters of the logistic model



can be obtained by calling an identification procedure
which operates on experimental time series (cf. table
2).

The procedural attachment possibilities offered
in such representation systems are essential as they
reduce the opposition between declarative and procedural
knowledge.

These general ideas has been applied in various
contexts, for instance :

- for languages development such as KRL (l6),
- for knowledge processing control by frames

in some expert systems based on production rules {e.g.
CENTAUR (17) or WEEZE (18)),

- as elementary tools, generally immersed in a
LISP environment and devoted to the building of expert
systems based on hybrid representations (often frames
and production rules, {19)(20)(21)(22)). Only inheritance
and procedural attachment are used for inference.

Finally, note that the advantage of frames over
production rules lies in the uniformity of representation.
A frame base fills the three roles of data base, algo-
rithm base and knowledge base.

Frames

Elementary Definitions. A frame is basically a
three level nested list. The first level corresponds
to the frame name, the second one to slots, the third
to facets. Facets completely describe a slot, each of
then has one or more values. In LISP formalism one
can write a frame as shown in figure 1.

In a computer aided modelling system, a frame
may describe a process (e.g. numerical integration,
parameter estimation, for a given model), an object
such as a model, an equation or a parameter or still
a state variable, a set of experimental data. It can
also define objects of the modelling application domain,
for instance species in population dynamics or relations
between species (e.g. predation, competition...).

Classes And Instances. We have seen in a previous
section that a frame defines a class of objects (a class
frame), a particular object is also described by a frame
(an instance). A simple frame can be associated to
the .logistic model (cf. table 2), a particular case (i.e.
an instance) is obtained when parameter values are
computed. Then the instance may be written :

(logistic_model_#1
(is_a ($value logistic_model))

(parameter ($value 1.1 100 10))
i D))

An instance may be a full or a partial instantiation
of a frame. It inherits properties directly from this
frame which defines the corresponding class by the
slot "is_a".

Hierarchical Organization, Inheritance. Each frame
is at a level of a hierarchy. It is dominated by less
specific frames specified in the slot "a kind of", and
inherits slot values of these frames. It can also inherit
from frames at the same level if they are specified
in the facet "$value" associated to the *“a kind of"
slot. This inheritance is ensured in the order of appearan-
ce of the corresponding frame after this facet. The
involved algebraic structure is a semi-lattice. The figure
2 shows an example of a hierarchy defined on Ordinary
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Differential Systems, for instance the structure of O.D.S.
Then the structure of an O.D. Equation can be defined
at the top level, each lower class inherits this structure.

(frame_name

(slot_1 (Sfacet_11 value_ 11)

(Sfacet_1n value_1n))

Eslot} (Sfacet._pn.| value_pn,)

'(Sfacet_pnp value_pnp)))

Figure 1 : frame, general notation in LISP formalism:
frame and slot names are user defined, facetsare
built-in (a predefined set of directives, cf. table
1).

1) Facets for type defiping

Sone followed by an elementary type or by the name
of a frame ;

Slist of followed by an elementary type or by the
name of a frame ;

Where an elementary type is integer, real,
booléan or string. A frame describes a more complex
object or data structure, for example an array.

2) Facets for slot values determination

Svalue defined the value of a slot In a frame common
to all objects of the corresponding class,
or a description which can be used to obtain
this value by pattern matching ;

Sif necessary permits the association of computation
and make possible the procedural attachment.
The corresponding methods are also described
by frames, they are generally written in
an algorithmic language ;

Sdefault value is assigned to a slot if all other
ways falled.

3) Facets for restrictive conditions

Sdomain followed by a list of
for the corresponding slot ;

Sinterval enables the definition of intervals for
‘correct values for elementary types ;

Sverify for attachment of a predicate,

admissible wvalues

which must
be verified for all values of the slot.

Other facets enable coherence keeping of
the base, control of reasonning and passage from
external to Internal representation and conversely.

Table 1 : Example of facets in SHIRKA
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1-dim_system 2-dim_system

_— 0.0.E. S

quadratic_2d_member non-quadratic_2d_member

linear non-lim{:ar a x f(x)_form
|
exponential  logistic .../f(x):Log(g(x))
/ \
g(x)= s

Gompertz

Figure 2 : Example of a hierarchy for 0.D.5. orien-
ted to models of population dynamics.

Inference Mechanisms. The basic inference mecha-
nisms attached to an object-centered representation
are instantiation, inheritance, pattern-matching and
procedural inference.

These mechanisms are not examined in details,
just principles are presented. One can find more comple-
te expositions in (10).

(i) Instantiation

This is the fundamental inference mechanism.
It corresponds to the completion of a frame, by obtaining
values of slots of the corresponding class frame and
also values of slots inherited from other class frames.
At each level one can identify a particular view of
the situation to be instantiated, the instance is the
union of these particular views. Figure 3 illustrates
the instantiation on a simple example.

frames instances

one_species_##1 jone_species_i2

one_species| one species one species

situation situation
dynamics dynamical view |dynamical view
of problem of problem
spatial spatial view
of the problem
spatio-temporal
situation
Figure 3 : Example of instances and views from

population biology situations : each level speci-
fies views of the study of one species cases. This
study can be only dynamical, then one_specles #1

instance is created. If special constraints are
introduced then the instance one species #2 1is
created.

(ii) Inheritance
If the value of a slot is defined at a level, all
the instances of this class and of more specific classes
inherit this value.

(iii) Pattern-matching

The facet $value can be followed, in a class frame,
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by a list of patterns which are frame specialisations
of existing frames they are descriptions of instances
which can be assigned to slot value. The pattern-matching
consists of finding this slot value. The figure & is an
example of the use of pattern to find candidate models
which could describe a particular biological situation:
the growth of a population or of an organism.

(growth_curve
(inflection point
(Svariable ?inflection_point))

(model_of growth
(S1ist_of model)
(Svalue
{model
(has_inflection point
(Svalue !inflection_point))
(model name
(Svalue ?model_name)))))

Figure & : The slot model_of growth has its value
assigned after pattern-matching. They are the models
names for which inflection points verify the desired
value. Note the use of the facet Svariable and
of symbols "“?" and "i“ a variable name preceded
by ? means that the value is assigned after matching
(side effect), a variable name preceded by ! means
that the value of the~variable must be known at
this level, particularly before matching.

(iv) Procedural inference

The values of a slot can be computed by an exter-
nal algorithmic routine. These routines are themselves
described by frames. Their slots are input and output
parameters. Syntactically, the need of a routine is speci-
fied by a pattern following the facet $if necessary.
In this case, the first step consists of matching the
set of instances of the treatment frame. If no correct
instance is found (i.e. corresponding values have not
been previously computed by a preceding call), then
the associated algorithm is executed and values are assi-
gned to parameters. If their values satisfy the constraints
then an instance is created. Finally, by a side effect,
the slot associated to the facet S$if _necessary receive
values. Note that if values can be computed in different
ways (i.e. methods) sequentially denoted after the facet
Sif_necessary they are tried also sequentially until a
success has been obtained. The table 2 shows an exam-
ple of a frame where treatments are needed.

Conclusion

The theoretical equivalence between object-cente-
red representations and first order logic must not lead
to consider only the choice of a representations as an
implementation one, or a suggestion for large bases
organization (23). Besides implementation facilities,
the detailed information, equivalent to a complex asser-
tion, contained in a frame and in the semi-lattice organi-
zation, make their use more efficient than a set of
rules where knowledge is dispersed in the base (24).

In addition the objects exist in the base and can
be handled as whole individuals. They do not need for
this an associated structure to link their properties.
Then it is not a surprise to observe that the object-
centered representation are more and more employed



for application developments (for example in C.A.D.
(25)). In such applications frames are used to represent
in a unique way data, objects, treatments and know-
ledge.

We have chosen such a representation for the
elaboration of the EDORA system : a computer aided
modelling system in biology.

(logistic_model
~ (a_kind of
(1) {Svalde one_species model one_dim_0DS
L one_scheme))
(parameter (Slist of real)
(Svariable ?parameter)
(Sinterval (0 inf))
(Sif_necessary
(MAP
(exp data (Svariable !exp_data))
(mat_cov (Sone array)
- (Svariable !mat_cov))
(parameter (Svariable Z?parameter)))
" (WLS
(exp_data (Svariable lexp_data))
) (var_data (Sone time_series)
- (Svariable !var_data))
(parameter (Svariable ?parameter)))
(oLs
(exp_data (Svariable ‘exp_data))
L (parameter (Svariable ?parameter)))
(ask
(question {Sone string)
(Svalue "parameter value ?"))
(Svariable Z?parameter))))

—_—
w

(2)

(answer
(Sdefault
(logistic example (Svariable ?parameter)))

e

Table 2 : Example of a frame defining the logistic
model .

(1) Multiple inheritance the object logistic
model inherits properties of corresponding objects
in mentioned classification.

inference values
be obtained from

(2) Example of
(estimates) of parameters can
an identification method. If there is either no
experimental data avalilable, or the identification
process fails then the system asks the user for
values. If the user does not answer then default
values are given (i.e. a typical example is re-
tained).

procedural

(3) Example of a procedural classification
if an a priori covariance matrix of parameters
is known then a Maximum A Posteriori method is
chosen, else If variances of measures are known
then a Weighted Least Squares method is actived,
else an Ordinary Least Squares method is chosen.
The corresponding procedural classification 1is
the following :

Identification_methods

Ordinary Least Squares
(oLs)
Max. A Posteriori Weighted Least Squares
(MAP) (WLS)
(ref. for identification methods BECK & ARNOLD,
(15)).
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PROBLEM ORIENTED SCHEMATIC DESCRIPTIONS.
EXAMPLE OF CHEMICAL LIKE REPRESENTATION
AND MODELS OF POPULATION DYNAMICS

Schematic Descriptions

The aim of this section is to examine a part of
the works related to the above mentioned project.
That is the use of symbolic or schematic representations
to aid both mathematical modelling and model interpreta-
tion. These are representations mediate between a
set of discursive hypotheses and a mathematical formu-
lation.

In many domains such schematic representations
are well known. Some examples can be cited :

- "box-arrows" flow diagrams used in compartmental
analysis,

- symbolic notation of chemical reactions,

- block diagrams used in engineering,

- bond graphs.

They are characterized by

- the use of a limited set of symbols. Each of
them has a precise significance (for example, in com-
partmental analysis, boxes are compartments and arrows
symbolize flows of matter between compartments);
schematic representations (schemes or diagrams) can
be considered as elements of a description language;

- the association with a class of mathematical
models (for instance, linear differential systems for
linear compartmental analysis) ;

- the translation process of a schematic represen-
tation in the mathematical language : it is known and
can be executed by an appropriate computer procedure
which works like a compiler (the input is the description
language, the produced code is a mathematical expres-
sion). Some simulation systems include such features
(see, for example COSMOS for compartmental analysis

(3.

It was mentioned above that symbols used in sche-
matic representations have precise significances, they
are more suggestive and more connected to the corres-
ponding application domain than mathematical models
(equations are semantically disconnected from the appli-
cation domain a mathematical object can "live its
own life" without regarding to any significance out
of mathematical world).

Althoug the translation process (scheme to mathema-
tical expression) is generally well known, and can be

integrated into the classical deductive approach, the
inductive process (mathematical model to scheme)
has not been widely studied. Indeed the litterature

swarms with mathematical models not related to sche-
mes, and it is sometimes convenient to choose or to
write directly a mathematical expression. So the question
arises : is it possible to associate a scheme to a model,
and then to aid in its biological interpretation ?

In fact, we are mainly last
question, and thus

interested by this

- to study some "classical" models for elaboration
of a structured model base (a part of the knowledge
of the EDORA system) ;

- to analyse the inference process for computer
implementation.

The problem is studied in a particular case : the
class of models related to Lotka-Volterra equations



in population dynamics modelling and a chemical like
representation for associated schemes. Then

- we discuss about the different computer tools
whose conception is necessary to aid both the deductive
and inductive approaches,

- we propose a new classification of classical
models of population dynamics, based on implicit hypo-
theses to be considered for scheme generation. It is
a contribution to a knowledge base conception and organi-
zation for EDORA system.

Finally, to make our approach clearer the figure
5 summarizes relations beween objects introduced in
this section : “natural/real" system (in our case a biologi-
cal one), schematic and mathematical representations.

Chemical Like Representations And Differential Models
Of Population Dynamics

Relations between multilinear differential systems
and formalism used by chemists to represent kinetics
of chemical reactions are well known. The relevance
of this representation for mathematical model elaboration
has been studied since 1962, essentially by Garfinkel
(4), (26). This author has also defined an algorithm for
automatic translation of chemical like diagrams in diffe-
ential systems. Another presentation of the translation,
based on matrix notation, facilitates the design of the
associated algorithm, but also, and mainly, the defini-
tion of the reciprocal procedure : the generation of
a schematic representation from a differential system
(27)(28).

However, the mathematical model need to be
written in a form (i.e. a multilinear differential system)
facilitating the search for an associated chemical like
representation. Conversely, it is sometimes possible
to simplify a differential system obtained from a func-
tional scheme, and perhaps thereby to obtain an explicit
solution x=f(t).

Apart of a general presentation (cf. appendix),
some cases have been studied to identify steps of symbo-
lic manipulations which can be automated and offered
to users in a computer system (for this MACSYMA (29)
possibilities have been widely used).

To make our
I1s presented
summarized.

just an example
results are just

approach clearer,
in detail, and complete

Example Of The Logistic Model. The logistic model
can be considered as a basic model in population dyna-
mics.

a) Scheme inference

x is a state variable which represents the density
or the size of a population (obviously x > 0) then the
logistic equation can be written :

% = ax(l—-’é) (al)
or

% =ax=>b x2 t)
the initial condition is x(1=0) = X it is possible to find
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list of variables ;
relations between
variables :
relational scheme

- Biological .........'._.-._.-...:. ees
system .
description 1 E
X: Yo Z :
B

—

description 2

O I O e

functional
scheme « lessvsssees

sessssessnasedsaabassannsainntd

{K+y-—a—-z

o)
~n

converse

CEaTETaEGh translation s
dx E
€ = s Jf (PR | E
ay _ ( ; mathematlcill :
ac - g(... representation dh.eceeees
dz
T h(...) 7
Figure 5 : Schematic representations and mathemati-
cal models. One can distinguish between two levels
of intermediate representations before writing
the mathematical expression.
level 1 relational scheme, for which no

hypotheses are expressed about mathematical expres-
sions linking the variables.

level 2 functional scheme, where the type
of mathematical expressions is defined for each
relation. In some cases, the most interesting one,

there is a general relation between a set of schemes
and a set of mathematical representations (for
example, in classical compartmental analysis between
the box-arrows diagrams and the set of linear diffe-
rential system).

level 3 : finally a translation permits to
write the mathematical model associated to a scheme.

Obviously, one can by-pass some of these steps.
For example one can write directly the functionnal
scheme (B1) or the mathematical model (B2). In
this last case, the most frequent encountered in
the literature, one could examine if some functional
scheme exists which can be assoclated to this mathe-
matical expression (converse translation).



an explicit solution

K . o

iac e 2t %a

(a3)

We just try to find at least an associated functional
scheme. From (a2), which is a simple multilinear diffe-

rential equation one can obtain directly the scheme
(28) :
a
- R U (a4)

b

Which can be interpreted as an autoreproduction
of the species x limited by an intraspecific competition
(e.g. spatial competition).

Now, from (al), let

s=(1- ) (as)

=Ix

s can be viewed as a variable proportional to a
substrate, the medium on which population growth is
limited in substrate. This substrate is consumed when
the population increases, at t=0 we have $=S5 -

From (a5) and (al) it comes

dx

—=bK xS

dt @6)
ds _ . .

dt’_bxs = be

note that K can be seen as a yield of the growth. Then
a scheme can be associated to (a6) :

b

x+s —+ (1 +K)x (a7)
it is often more convenient to write
X K
s=c(l-¢) and R ==
then
K=Rs +x
o
and (a7) becomes
x+s 2 (1+R)x (a3}
This example shows the non-uniqueness of the
solution. The solution depends on implicit hypotheses

concerning the involved mechanisms or conditions compa-
re (a5) and (a8). One of the interests of this approach
is to oblige the modeller to specify his hypotheses.

b) Mathematical model generation

The above scheme describes the growth of a popu-
lation on a limited, isolated, medium. This scheme does
not include a death process for biomass x. Assuming
an exponential death process, the scheme (a7) is comple-
ted by the corresponding pseudo-reaction :

b

x +5 — (1 + R) x ; (logistic growth)

(b1)

; (exponential death process
with a substrate release).

On this example the main steps of the mathemati-
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cal model generation from a functional scheme are
briefly presented (cf. appendix for details). The ordinary
differential system (ODS) can be written (appendix
A5) :

dX
AT DV (b2)
here
X R -1 bxs
x:() ;D:( )and V:( )
s -1 g d x
then the differential system corresponding to (bl) is
dx _
at bR xs=-d x
(b3)
g—i =-bxs+dr x
- if r=!/R, as above, then s and x are linearly
dependent and this leads to the logistic model (al) with
Rsc + Xy
K =
d
1 +—=
a

- if r# /R, it leads to the Kostitzin integro-diffe-
rential equation (31).

c) Discussion

From a scheme a mathematical model can be
generated uniquely. Conversely the same mathematical
expression can be obtained from different schemes,
and different hypothesis on involved mechanisms. Thus
the mathematical formulation appears not to be as
unambiguous that we generally believe. Thus it is impor-

tant to consider such difficulties and to caution the
basic user, event the modeller himself, about model
interpretation.

Consequently, although automatic formal manipula-
tions are sufficient to generate a mathematical model
from a scheme, additional knowledge is necessary to
infer a precise scheme from a mathematical expression.

Computer Implementation

a) Scheme to ODS translation, simplifications

Consider the last example (bl), the f{first step of
which (i.e. translation) gives the ODS (b3). But in some
cases state variables are linearly dependent (for our
example if r=l/R, s and x are linearly dependent), then
it is possible to simplify the differential system :

- the simplified system may be easier to handle
than the original one, for example the number of equa-
tions is lesser, which leads to faster numerical computing;

- at the experimental level, only independent varia-
bles have to be measured.

Thus it will be convenient that a computer aided-
modelling system oriented to such problems solving
has these capabilities. The following steps can be propo-
sed :

- generation of matrix D,

- test of linear dependencies,

- generation of complete and/or simplified system.



b) ODS 1o scheme inference

Scheme generation f{rom a mathematical model

written in ODS form needs :

(i) to verify some formal constraints (cf. appendix
and logistic example presented above). Principally the
ODS must have multilinear right hand sides, and the
DR matrix, computed from D and DL matrices, must
have positive or null components.

(i) generally additional knowledge about biological
problems under study has to be considered to distinguish
between different schemes. For instance, for the logistic
case if the studied population grows on a medium limited
for substrate, without significant mortality then the
solution (a8) has to be chosen.

It is also interesting to look to the possibility
of interpretation of models written in integrated form
x=f(t). Then a first step in scheme inference consists
in finding, if possible, a multilinear ODS which analytical
solution 1s x=f(t).

Thus the following solutions could be proposed

- to define procedures for the passage from ODS
to a scheme, on the basis of remark (i) ;

- 10 freeze a part of knowledge
base associated to a model base ;

- to envisage formal manipulations to handle the
last case for analytical model aided interpretation.
for this we have used MACSYMA (29) capabilities on
some models to select formal calculus procedures necessa-
ry to solve this problem.

in a scheme

Finally, figure 6 depicts principal steps and associa-
ted operations to make possible both approaches.

Toward a Knowledge Base in Population dynamics

Models of population dynamics have been developed
for a long time (Fibonnaci's work, 1228 (32), and more
recently Malthus, 1798 (33), and Verhulst, 1848 (30),
Volterra, 1931 (34)...). Most of them are written in
differential equation terms. As already mentioned these
models were essentially devoted to theoretical studies.
Apart from mathematical difficulties, technical aspects
can explain the lack of interest in differential equations
in practical use :

- for a long time the difficulties to access to
numerical tools and means has not permitted large deve-
lopments of their quantitative use (numerical integration,
parameter estimation...),

- the biological interpretation is not always obvious
and not easily accessible to the biologist. It is generally
proposed by the mathematician, a paradoxical situation.

Today numerical procedures and powerful low cost
computers enable practical uses in relation with experi-
ments or observations and measurements in nature.

We have contributed in some- degree to this development
(35)(36).

For biological interpretation .some indications
can be found in the literature. However they are essential-
ly based on considerations about the mathematical expres-
sion of models. Now we have seen about the logistic
model example that the same mathematical expression
may have different interpretations and schemes appear
more adapted than equations, at least for this purpose.
We propose therefore to use such schematic representa-
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CHEMICAL LIKE REPRESENTATIONS

a
—{(1) % = 2 <
b
—{2) x +5 — (1+R) x 4—
X +5 —a—b (1+ R) x
© pree
X =—+ [ S
I translation converse translation
F F: )
HMATHEMATICAL EXPRESSIONS
dx
at - bRxs-dx
(3') 4
s 4
AT bxs+drx
dx
at - bR xs
»{2')
ds 4
dc - -bxs mortality
and
21
r= =R
/
simplification expansion

(limiting substrate: s)

/ ( other

dx

Lp-(1') —_ax-bx limiting —
‘\mechamsms)
integration ! | differentiation
1T+ Ce T.cedt
(K:Rso+xo; a=bkK andC:(K-xo)fxo)
Figure 6 : Illustration of different steps permit-

ting the translation from schemes to ODS and conver-
sely (on logistic model example). MNote that it
is possible to associate to the expression (1')
three different schemes following hypotheses about

the studied problem (1) no explicit limiting
substrate (the limitation is explained by other
mechanisms), (2) limiting substrate, (3) id. (2)

plus mortality of x with regeneration of substrate
= 1/R.

tions not only as an interface computer language, but
also as a tool for model base organization.

Procedural Knowledge. Clearly a computer aided-
modelling system has to offer to users numerical and
formal procedures permitting model manipulations,
simulation and identification (i.e. parameter estimation




one species

o
x + f > (1+R) x +f
% b

f—— P

Gompertz model
()

> b
KTy
o

(1 +R)x

e xpor;ential model

()

s =65t
M x + s —b:» (1 +R)x + exponential death process
1 X+ S B, (1 +R) x
logistic model4—r = R d
(%) X —> rs
(*) R>0: growth
-1 < R< 0 : decrase r< 1/R r>1/R
v v
(death process) Koy - Ko

two species Kostitzin model

5 Kos -
X + 5 > (1 + R) x
c |
2
b Xw——p % % ¥
bk 1
X+y—> y +=s
s = ¢cst : predator - prey
= (model 1)
x+5 —> (1« R1)x
=8 xfy—bb' (1*R2)Y
c
Y b s fecst:  predator - prey

(model 2)
A
X+ 5 —Ip 1+ R‘l) X
A — basic competition case
55 2 (1« Rz) g (model 1)
A r= 1/ R1 Prp= 1/82
x+5 —> (1 4+ R.I) X competition case
(model 2)
B
X —L £, s
A
v + 5 — g (1 + RB) y
8 I‘1ﬁ 1/81 H rzﬁ URZ
y ——ﬁ r,s general competition case

{model 3)

Table 3A : classification based on functional schemes re-
presentation.

Table 3 : example of knowledge organisation for some
classical models of population dynamics.

It is supposed that populations are in a medium Hmited
(or not) in substrate (s) or factor (f) and at t = 0 :

x(0) = Xo y(0) = Yo s(0) = s, and f(0) = TS
for details about the relations between schemes and equa-
tions see the text, the figure 6 and the appendix.
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Table 3 B : classiffcation based on
tation.

one species

Gompertz model
X K
gr-ax Leg =

(a=a

135 = b Log K
K = exp(azl(az-fo)Log xo)

Exponential model
ﬁ—: =kx 3 k=bRs
logistic m'odcl
g—:-—- a x(1 - FIE)
K=Rs %0 a=bkK

Kostitzin model
(1-species)

c>0: Kos +

t
%: x,bx2+cj;xdu
c<0: Kos - c=Rdlr- 1/R)

Y

two species

Kostitzin model

e>0 : Kos + (2-species)

4 %:ax—bx2+c1xy
c<0 : Kos -
dy _
dc - %2*
predator-prey
model 1 model 2
dx dx . 2
- dt-ax—bxy Euax—bx - cxy
dy _ _ dy _ _
at.= cy + dxy at = ey + fxy
.
competition
model 1 model 2
dx . dx

= 1 dx _ 3o A
E‘AT(K -x-Rzy}x at _A.|R1(K.I-R1x- Rzy)x

R R
9 a2 gL dy _ e
ge =t R ¥ | g AR e gy
1 2 1 2
model 3
t t
g—::A1R1x(K1»1R—x-}R—y+Cf;xdu+D‘/‘; y du)
1 2
t t
%{-=A2RZY(K2‘1R_1X_;—2Y+C-/; xdu+[£[o y du)

K = Al(R'l Sot %o * R.IJ’R2 yo) :
K1 =,“>Q+1.IR1 xo+1/R2 Y= B1I(A1R1)
KZ =5, + 1/R1 X+ ‘I.c’R2 Y= BZI(AZRB)

C = B1 (1:1 - 1/!-‘(1) » O = B2 (rz- WRZ)

mathematical represen-




from experimental data). We have seen that procedural
attachment enables the call of such procedures from
a frame and procedural inference, by pattern-matching,
permits using a method adapted to the problem under
study (cf. table 2). More generally, apart from the
algorithm itself, the procedural knowledge itself can
be augmented by informations on its good use. This
enables the system, or the user, to choose the most
appropriate method if it is available, to solve a given
problem.

At first it is envisaged to furnish recent algo-
rithms for ODS handling, particularly for multilinear
ones. One of our principal goals is the connection with
the experimental domain, thus parameter estimation
and experiment aided design methods will be considered
with great attention.

Models of Population dynamics : Knowledge Orga-
nization. Schemes seem to be powerful tools for model
design and interpretation. Relations between classical
models of population dynamics and the proposed chemi-
cal like representation have been studied in similar
way to that of logistic model example. In this section
results concerning isolated populations are presented.
These populations are assumed to growth in isolated
media limited, or not, for substrate, factors (toxic
or conversely, growth factors) may have an influence
on studied populations.

The proposed organization is summarized in table
3. This approach has permitted, as a side effect, to
find some original results, briefly :

- the Gompertz model (37), often considered as
an "exotic" one, is presented in the same framework
with other models of population dynamics ; it describes
growth on a limited medium controlled by a growth
factor ;

- the Kostitzin model generally interpreted as
a growth with a simultaneous generation of a toxic
factor (31)(35) can be viewed as a simple model of
growth on a limited medium with a "natural' death
process ;

- the basic competitive case leads to a singular
system (i.e. the equilibrium points are on a straight
line) then the reached equilibrium point depends on
initial conditions ;

- a general integro-differential model of competi-
tion (i.e. a two dimensional Kostitzin model) is given.

We propose, in a first attempt, to use this organi-
zation as a basis for a knowledge model base in popula-
tion dynamics. This base will be extended to integrate
other problems and other formalisms, such as difference
equations.

CONCLUSION

Some aspects of the development of a computer
system to aid modelling approaches have been presented.

The goal of the EDORA project is to propose
an “intelligent" tool for model building, study, manipula-
tions and using in Biology, particularly to guide model-
lers and experimentalists in problem solving related
to analysis and/or control of biological systems, and
to aid them for “optimal' design of experiments. At
first, the biological ability of the system will be in
population dynamics, further developments will be
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in biochemical kinetics, and dynamics of biotechnical
processes. The choice of a knowledge-based conception
enables to extend easily the application domain.

Our approach is justified by the present (and future)
need for modelling competence in Biology and Biotechno-
logy and by the extensive knowledge necessary to com-
plete a modelling work (from mathematics, statistics,
to a good understanding of biological problems) which
is difficult to gather for one individual and also for
a staff.

This system will be a knowledge Management
System handling :
- procedural knowledge (numerical and formal

algorithms and their choice);

- application field knowledge
of equations, meaning of
of validity, ...) ;

(e.g. interpretation
variables, effective domain

- knowledge about the modelling approach itself
(how to choose and/or to build a model, how to use
it : identification, validation, optimisation of experi-
ments, simulations, ...) ;

- data and model bases ;

users (for
aid model

- elaborate tools for interaction with
instance, adapted description languages to
building and interpretation).

The object-centered representation facilitates
encoding naturally structured knowledge in an easier,
and certainly more efficient, way than do production
rules. Moreover, we have seen, through the study of
classical models of population dynamics, that if a domain
appears to be structured, thinking about this structure

for the particular objective of acheving a computer
knowledge representation is desirable. It may lead
to new considerations about the knowledge and the

relations between objects, for example between existing
models. Finally, apart from technical facilities in model
building, the use of intermediate representations such
as functional schemes presents some interest in model
organization, in so far as it requires more precision

about involved mechanisms than mathematical expres-
sions.
APPENDIX

In this section the principles of the transla-
tion algorithms are briefly presented, they enable
to write a differential systems from a scheme
and reciprocally. Informations about computer
applications can be found in a previous paper
(27) and a discussion of these algorithms in our
work (28). We must note that we did not try to
forecast the mathematical behaviour of the system
of equations associated to a scheme, it is certain-
ly an interesting way, difficult in non linear
cases, however we can retain the work of Beretta
et al. (38), which is a promising attempt in this
direction.

Definitions and notations

A set of chemical, or
tions can be written :

"chemical like", reac-
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where r is the number of reactions and 4&! is a
scheme (a functional scheme) in the sense that
it describes interactions between species denoted
in the left hand sides (i.e. for the ith reaction:
(L)

le i T3S Li. in the corresponding proporticns
nij ) which product species denoted in the right
hand side (i.e. for the ith reaction : xii), i&k&Ri

in the proportions mik)'

We suppose that the n; . are positive integers
and the mij are reals positive. Practically, in
the most cases we have : Li < 3 and nij < 2 (i.e. the
elementary reactions are very simple).

The sign + has no arithmetical significance,

it just means that species are all together in-
volved in the corresponding reaction.

Matricial notation

We have proposed to give a matricial represen-
tation of the set of reactions

K
D X —F B X (A2)
L R
i N tri t D = ass
where DL is the r x matrix L [nl]]r
DR is the r x N matrix : DR = [mij],
X is the N x 1 matrix of species, and K is

the r x 1 matrix of kinetics parameters Ki.

A nul term in DL (resp. in DR] means that
the corresponding species doesn't intervene in

" .th A
the i reaction.

Example : for the scheme describing the competition
case (1) (cf. table 3).
A'I
oA 8= 1+ R1) X
R

¥y s =% [1 % Rz} y

®
"
< X
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o
e
]
N
O -
-0
L 22
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o
o
I
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Mathematical model

If the kinetics are governed by the mass
action law, they can be formalized as in classical
chemical kinetics, by a set of differential . equa-
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tions

L,
dx r i
e A T (A3)
dt ; ki i : ij
i=1 j=1
1< kSN
dki is the general term of the N x r matrix D
L. GO
D= DR DL
(Ad)
Gy = ®g = My
dki is the difference between the quantity

of Xy in the left hand side, which is supposed
to “disappear", and the quantity of xk in the right

hand side, which is suppose to "appear", in the

.th :
i reaction.
Then (A3) can be written

dx

at DV (AS5)

where V is the r x 1 matrix

3=
L is the r x r matrix of kinetics parameters
(diagonal), and T the matrix of products of species.
Practically, the most intefesting equations

are linear or bilinear, then the effective expres-
sions are more simple than (A3).

For example, for the competitive case (1)
we have

A] 0 X.S
D = 3 = =
0 R2 K (0 Az and T (y.s)

Writting the differential system

The following algorithm can_ kK be proposed :

from a set of chemical reactions x{ one can genera-
te -1

(i) the vectors T and V from left hand sides
of reactions, and kinetics parameters.

(ii) the matrix DL and DR and

(iii) then the differential system (A3)
(iv) simplifications

- for a reaction or a set of reactions, the
dynamics are completely determined by the left
hand sides of reactions, then by compounds which
appear in these sides. In the other hand products
which can be measured during an experiment are
important to be considered even if they appear
only in right hand sides. These sets of compounds
may be called determinant compounds (or species):
they must be considered for formal and/or experi-



mental reasons. Other products (or species) give
no complementary information, we call them non-

they can be
even in the

determinant products (or species),
omitted in the differential system,
reactional scheme itself.

- some other simplifications can be done,
for example by considering the rank of matrix
D, and then the analysis of linear dependance:

The rank of matrix D is at most equal to
the lower dimension of D (i.e. min (N,r)). It
is particularly interesting if r<N : in this case

rank (D)<r. It means that the rank of the system
is at most equal to the number of reactions, then
some variables associated to species (i.e. state

variables) are linearly dependent of the others.

Example : we have seen that it
reduce the number of equations, for
model where

is possible to
the competitive

1
D={ 0 R,
=1 -1
Obviously rank (D) = 2, then we can choose

two independant variables for which lines of D
correspond to orthogonal vectors (in our case
we have chosen x and y).
Scheme inference

From a differential system written as (A3)

one can build :

the matrix T, then the left hand sides
of reactions and matrix D_ with expo-
nents of species variables,

(i}

the diagonal matrix X or the matrix

K

(ii) 1’

(iii) the matrix D

=p" + 0D

(iv) L

the matrix DR

the following conditions must be verified

n5 € N
.
mij R

(v} If all elements of a line -of DR (resp.

DL) are null then the right hand side (resp. the

left hand side) of the corresponding reaction
doesn't exist. Such a situation can occur if non
determinant products are omitted, then

- to represent a death, or an emigration,
process one can write
k k
X = or X == 8

-a mutually toxical or degeneratical effect
for two species

X +Y k, g
-an immigration process with a constant
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rate
k
1 =* X

or k, X

k

— + .
or m, Xl m2 XZ for several
species.

Discussion about automatic generation of differen-—
tial equations and scheme inference

a) strings obtained by permutations of species
variables with their exponent or with their coeffi-
cient in reactional notation) are eguivalent.

For example, x + y is equivalent to y + x
in a reaction, and the corresponding terms x.y
and y.x are equivalent in a differential equation.

To have a minimal representation it is conve-
nient to write the matrix T, formally, by defining
the generic element of the class of equivalence.

b) The case of reversible reactions can be
solved by considering that such a reaction is equi-
valent to a set of two reactions where the right
hand side of the first one is the left hand side
of the second one.

c) scheme inference : the unicity of

infered scheme is ensured if dki and K are

it is obviously a consequence of the unicity of
matricial operation. In the case of reversible
reactions, it depends of an a priori convention
of its representation with one reaction with two

the
known,

arrows or two reactions.

However in most cases d,. and Ki are not
individually known, so the unicity of” a scheme
deduced from a given differential system is not
ensured. But in such a case nij are always known
(i.e. exponents in differential equations), then

left hand sides of scheme are uniquely determined.
Then, the problem of inference is reduced to the
right hand sides of the scheme.

Suppose a multiplicative term in the kth
differential equation :

dx n

k _ (L), 'ij
a o T Y LR A
h .= v Ky

we have wkl dkl K1

but d and Ki are not known individually.

ki
Obviously Wi # 0, else this term wouldn't ap-
pear in the right hand side of the differential
equation
of w is

ki
(Ki is "always positive)

(i) the sign determined by the

sign of d then

ki

- i > i > 2
if Vi 0 it means that dk ki” Mki

there is a positive contribution of the term corres-

.>0 and m
i

2 .th . . : .
ponding to the i reaction in the differential

equation, that is a preoduction of xk_from the set
od species which appear in this "multiplicative

term (i.e. in the right hand side of the associated



reaction) .

oo BE W

ki
contribution of

< < < i i
0, dki 0 and n mio: there is a

ki

negative the term corresponding

to the ith reaction in the differential equation,
it can be seen as a degradative effect of the set
of species appearing in the multiplicative term
(i.e. in the right hand side of the associated
reaction).

(ii) It |is
g # 0 and ny g

interesting to discuss the cases

= 0.
. th
Remember that n, . is the k

ki
ith column of Dz (or of the .1'.'Ch line of DL).

element of the

Let {Xij) be the set of variables appearing

in the multiplicative term above mentionned, their
exponents are non null.
-if n , # 0 then X {xij} (i.e. X, appears

in the right hand side of the reaction) and

Mei = ™i oK

as Ki is unknown, any real positive value can

be chosen such that ™oy > 0. for example :

Ki = 1 then mes =l + n (always verified if
Vg BE OF GE Wy Syl
or yet

Ki = wki then mg =1+ L if Wi >0

K, = v then meT Mg T 1 . if Wy <0

Note that the choice of K., must be compatible
with analog constraints for other implied variables.

The associated chemical 1like reactions have
the following forms
K. =1 ¢
= 1
= + LK A e i + W
i %k s TR T
= W W > ]
K; ki ( e 0)
ki
+ a i :
nkj. xk+ + + (1 +nkl) xk+
_ & . . :
l'(1 Wit * Vi 0 ; by adjusting Ki such
that mes = 0 the following scheme can be obtai-
ned
-, .
ki
a e & nki Xk + aaa .o .nw

which is particularly suggestive to show a degrada-
tive effect on K, .

k
-if n , =0 then X, / {Xij} . X, does not
appear in the left hand side of the reaction.
>
Wi 0 then
o ki
Mei K,
i
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and the following scheme can be proposed

ses ¥ wwa: F

mki Xé + ...

production of Xk in proportion mki.

<
Yy 0 then as Ki and ™

(or null) it is not possible to find a correspon-
ding reaction.

must be positive

To conclude, if only Wy are known there is

for the left hand side of associated chemical like
reaction at most one solution, but more than one
solution for right and sides (it depends of the
choice of K,) but the significance of the reaction
is not modified by alternative possible right hand
sides.

d) variables can be omitted in the differen-
system if there is known functional relations,
for example linear ones, with other variables,
then they can be replaced by these functions. Such
simplification can give a more simple system with
less equations than the former one. It is particu-
larly interesting if numerical integration is nee-
ded.

tial

However the inverse problem, i.e. to find
a scheme associated to a such “"simplified™ differen-
tial system, may be not obvious to solve if the
relations are not explicitely specified. To associa-
te possible schemes with some classical differen-
tial equations and to show such an approach 1is
an aid to biological interpretation of these models
is precisely one of our goals.
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