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Abstract—A matricial formulation of like chemical systems is proposed. This representation per-
mits us to draw up easily a generation algorithm of rate equation, and reversively an algorithm
which gives, if it is possible, a descriptive chemical system from a set of differential equations.

#  The problem of numerical simulation is also studied. All these levels have been integrated
in a general computer program which can be considered as a tool for modelling. A biological
exampie illustrates the use of this program in the study of a model: the evolution of RNA
in the silkgland of the silkworm.

Algorithm  Chemical reactions ~ Computer-aided design ~ Ecology =~ Enzymes  Models
Simulation

INTRODUCTION

Kinetics analysis of chemical systems can be considered as a particular case of systems
analysis. With extensions, analogue studies have a great interest in other fields than
chemistry, such as biochemistry, molecular biology (for example: compartmental
models), and ecology (determinist models of populations dynamics; Garfinkel [5], and
Lotka [9]). we call these types of systems: “like chemical systems”.

Mathematical kinetics models of chemical systems are obtained from hypotheses
derived from general theories. We assume that like chemical systems can be analysed
in the same way, with eventually complementary hypotheses. We are interested in the
set of hypotheses which permits mathematical modelling in terms of differential equa-
tions.

However, before modelling, a particular system must be described specifically.
This description (i.e. list of particles of the system, interaction between particles, etc)
can be made discursively or formally. In fact, it is well known that for this purpose
chemists use a symbolic language which facilitates the derivation of the associated
mathematical model [7, 12]t. Such a description may be seen as a complementary set
of hypotheses applied in a particular case. Consequently we consider that a formal
description is also a model of the studied system. The problem of modelling thus takes
on two complementary aspects:

(i) That of a formal description with a goal of finding the mathematlcal model of
a system. This corresponds to the translation problem of a phrase of a symbolic language
in a mathematical expression}. This translation makes possible the numerical simulation
of the system, and the comparison with experimental data (by using an optimisation
method for the estimation of model parameters).

(i1). In some cases, it is possible to infer directly a mathematical model. So one may
be asked: if we assume true the general hypothesis of kinetics of like chemical systems,
is it possible to find a formal description of the system studied?

This first aspect has appeared in the literature: see Garfinkel [5-7]. To our knowledge
a solution for the second one has not appeared. The present parallel approach to the

* Laboratoire MIAG, Université Claude Bernard, Lyon, France.

t This formal description approach can be used in other fields of system analysis.

it Eventually if the usual form of the mathematical expression is not necessary, it can be obtained in
a convenient form for computing (for example, post-fixed form).
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two problems permits a new and simple formulation. In fact, it becomes possible with
such an approach to work at three interdependent levels:

(i). Conceptualisation of the system (formal description) directly, or solution of a
mathematical model.

(ii). The mathematical model itself possibly obtained from a previous formal descrip-
tion.

(iii). Numerical simulation.

These levels have been integrated in a study using a computer as a modelling aid.

MATRICIAL EXPRESSION OF LIKE CHEMICAL SYSTEMS

Using chemists’ formalism, we can consider that the general representation of like
chemical systems is the following:

k d i
n“X“"} e g nxg,Xm, = my X+ o+ myg X0,
a . k d
ng X+ + “z;;zX%};z- =3 mp X+ + m2d1X(2¢}1
4 k; d
na X%+ + n.g.X(L) = mp XY+ + mldind,

na X%+ + n,g,X‘“ 5 om X+ + m,drxfd)

X® is the species of particles in the left hand side of the " reaction (1 <i<r,
l<j<g)

X4 is the species of particles in the right hand side of the i'" reaction (1<i<r,
1<j<d,).

ny, a positive integer, is the number of particles of species X;; in the right hand
sxde of the i** reaction.

n,;, also a positive integer, is the number of particles of species X;; in the left hand
31de of the i** reaction.

The X;; terms are not all necessarily different (generally not).

A revcrmble reaction can be represented as two parallel reactions where the left
hand member of the first one becomes the right hand member of the second one and
vice versa.

Now, consider the vector of all differents names (i.e. different species) in the system:

X,

and the matrix

o Mg | = lImgll

Where n;; is a positive integer if X; is present in the left hand of the i'" reaction,
or 0 if X; is absent.
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With the rule
8.+ = ifn;; # P thenn; x X else A. (2)

Where A is the empty string.
The left hand term of system (1) can be denoted as a matricial product on strings,

applying the rule (2):
R,=D,.X, €]

where D, = |n;;|l, and by adding between all the non-empty strings s;; the separator +.
For the right hand terms, we have the same result: :

Ri=D;.X (@)
where Dy = ||m;|, if
- -KI-
K= Ki ’
_Kr_

is the vector of the rate constants of the reactions, then the system (1) can be denoted,
using a matricial representation:

Dx & Dx 15)
example:
Consider the system
A+2B 5 ¢
K (6)
A+D 3 E
then
I—A—
B
X=g; K=[k1}
ks
D
_E_
o=} 2000 Dd=[9 sl 2 Q’].
19090190 P oo 01

HYPOTHESIS, MATRICIAL EXPRESSION OF A DIFFERENTIAL
SYSTEM RELATED TO A LIKE CHEMICAL SYSTEM -

We use the results ofchemical kinetics theory (essentially the Van’t Hoff rule, and
theory of molecular shocks). These results are very general and can be applied to many
systems which consider populations of particles, such as bacterial populations and some
animal populations, particularly if we accept “autoreproduction” of particles: (Garfinkel

ES,7D):

General hypothesis
One can formalize the results of chemical kinetics theory as follows:

ChM 74
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(i). Consider the elementary reaction
X + -+ n, X9 £ m X 4o 4 m, X9
We are interested in the variation of concentration (or number of particles) of the
“compounds” X¢,...,X. To simplify, we use the same notation for the name of the
compound and the quantities related to it (concentration, number of particles . . .)*
(ii). The rate of the reaction can be denoted:

V=1Fkx XP1rn, x XPtrg % x XP1n, = D

To clarify the notation we have used the following symbols: 1 for the exponentiation;
x for the multiplication. ‘

(iii). The rates of variation of related quantities (concentrations, numbers of particles....)
are:

o 17dX§ gl dx 1 dx{» 1 dx§) v ®)
n, dr T oom, dt  my dt  my, dt ’
(iv). If a compound X is present on both sides of the reaction then
_ 1o
m,— n; de :
or

i PO V. 9
dt—(m:—"i)x . 9)

If X, is absent on the right (or left) side of the reaction we have:
m; = 0 (resp. n; = 0).

This equality can be considered as the general formulation of the variation rate of
the quantity related to the compound X; it also permits us to introduce “auto-
reproduction”.

(v). For r parallel simultaneous reactions, the variation rate of X is

dx, & (dX,
?—kil(w)k’

where (dX;/dt), is the variation rate of X; in the k'" reaction.

Matricial expression of the variation rates of compounds in an t parallel reactions system
Suppose V;, Vs, ..., V, are the rates of the reactions of the system. For the reaction k,

from equation (9).
dX;
(), n .

where dy, = my, — ny. Thus (9) becomes

ax, _ <
dt —k=1

this expression is the scalar product of the vectors, in matricial notation:
dyy 4
D, = and V=
d;, ¥

dy % W,

Note: * In this sense, X% ... X'9 are identifiers of variables, as in programmation languages.
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For all compounds, we can denote
dXx

dr
where X is the vector of the compounds: X,,..., X;,..., X,. D is the ¢ x r matrix

-'D;

= D.V, (10)

(‘D; is the transposed matrix of D). -
Ngw consider the deﬁmuon of the matrix D and the definitions of the matrix D,
and D,; we find that

D="'D,— D, (11)

Further, the vector V' can be obtained by the multiplication of the diagonal matrix
K, times the vector of kinetic terms:*

(1.) X e X X
T = 11 My A nlpJ (12)
Xﬁ) T n, : X(l-) T Ny
Then, (10) becomes
dXx
g7 = (Da—'D)-K"T. (13)

Note that a such representation of kinetics equations is customarily used for linear
differential systems; in these cases T is equal to X and D is a square matrix q x q.
In fact, as shown above, a matricial expression is also available for non-linear systems.
For a computer program design, such a representation is very convenient.

GENERATION OF RATE EQUATIONS FROM A LIKE
CHEMICAL SYSTEM. ALGORITHM Al

The matricial equations (10) or (13) may be used in two complementary directions:

(1). To obtain a numerical evaluation of dX/d:. The numerical integration of the
differential system then becomes possible.

(ii). To generate the differential system of a like chemical system. This set of differential
equations is generally called the “rate equations”. So, this formal expression permits
analytical or heuristic studies on the mathematical model.

For any of these purposes, it is necessary to obtain all the components of the equation
(13) from a like chemical system written with the implicit syntax (1), or any equivalent
syntax. As the problem is defined, the generation of matrix D,, D, and K’ is easy
from a string of type (1). In the same way, the generation of the components of the
vector T is possible using an algorithm F applied on the left side of the reaction:

n1X(IH)+"'+,anfvg)_F’ XE1n x - XXLF)T"p' (14)

F can be seen as a bijection of the sets of strings, implicitly defined in (14) (i.e.
a bijection of a language L,, describing the left hand side of the reaction, on a language
L, which can be considered as a subset of mathematical language or, in the present
case, as a subset of arithmetic expressions in the sense of a programmation language,
ALGOL 60 for example).

Note: * Diagonal terms of K’ are k,, k... k,. It is obvious that in practice in a computer program,
we shall use only vector K as it is defined in Section 2.
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Finally, we must specify that, in the way of formal generation, the symbolic matricial
multiplication D.V is done using the rule (2) (substitute d;; to n;;).

GENERATION OF A LIKE CHEMICAL SYSTEM FROM A
DIFFERENTIAL SYSTEM. ALGORITHM A2

Let us consider a differential system. If it can be considered as derived from a chemical
system, then it must have a syntax equivalent to the following formula:

dX; s
_I—_—' Z 7’1,-[ X kr X ]:[X_,Tn}
de 5 jel
l<i<g,I={1,2,...,q} n;isan integer (signed or not); k, is an identifier (rate constant);
n; is an unsigned integer. All the terms
- ’
[1X;1n
JjerI
are kinetics terms, as they are defined in (12).
From such a set of formulas it is obviously possible to obtain:

(i). The vector X
(ii). The vector T
(ii). The vector K
(iv). The matrix D.

And from the vector T, one easily finds the vector X' of compounds in the supposed
left side of the reaction, and the matrix D’ of the exponents of each compound in
T. Hence, D, is obtained by completing D' by nul columns corresponding to each
compound present in X and absent in X' (in the same order). Then, in respect to
(11), we have

‘D, = D + D,

If, simultaneously, all terms of D, and D are positive integers or zeros, and the lines
of these matrix contain one more non nul term (a reaction has a left and a right hand
side !), then applying the symbolic multiplications (3) and (4), we have finally the right
and the left hand sides of the reactions of the desired like chemical system.

NUMERICAL SIMULATION

Second members of equation (13) are generally continuous, derivable in terms of
X,,....X,, and the concentrations (or rates or number of particles) are bounded. Thus,
equation {!3) has one, and only one, solution depending on the initial conditions (gener-
ally values of X, ... X, at t = 0). However, in most cases, analytical solutions of (13)
are impossible to find. So we must use simulation methods.

Today, it is well known that there are few methods of simulation: electrical analogy,
analog com:utation, numerical computation with, or without, automatic- generation of
equations.

To expi«.a1 our choice we examine an example of like chemical system: the study
of enzymes action in biochemistry.

An enzyme can be considered as a “black box™ whose inputs are substrates S,,... S,
and ¢ tputs are products P,,... P,. So, the cellular metabolism may be represented
by a complete network of such boxes. This model suggests an electrical analogy (as
proposed by Atkinson [1])

enzyme < transistor
reaction rate <> current
concentration « voltage.
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This analogy is not devoided of interest [3]; but it cannot be used very far:

If a capacitance can represent the volume of the solvent, it is difficult to find out
the analogue of a resistance or inductance.

Ohm’s law can only be obtained in particular cases. Beside many authors have built
computers to solve equation (13)[3, 10, 13].

These devices have the disadvantage to be adapted to a given reaction; and since
the initial conditions are altered, certain components have to be changed, or if the
whole of the studied reactions are modified, the structure of the computers has to
be adapted.

Therefore, it seems more flexible and more general to solve this problem with numeri-

cal methods on a computer. However, to have an available solution in all cases it

is necessary to use a good procedure for numerical integration. So, we don’t use all
separated step methods in order to obtain a better convergence and a greater precision
of the results. Hence, we have chosen a set of variable step methods proposed by Gear
[8]: Adams’ predictor—corrector methods; Gear’s variable step method with numerical
derivation which is also good for non stiff problem; Gear’s variable step method but
with a formal derivation, a more accurate method, but slower than the previous one,
its use is necessary for stiff problems:

In order to have a fast calculation right hand sides of differential equations are con-
verted in a post-fixed mode.

The integration methods require the derivatives of the second member of these equa-
tions to be known. In order to have accurate calculations, the derivation is formally
carried out and not numerically.

The description language and resolution program are machine independants as pro-
posed by Garfinkel [4].

PROGRAM DESCRIPTION

The program has been drawn up in the goal of a conversational use, and organized
around two principal subsets:

(i). The first one is a processor working on strings as inputs and outputs; this subset
has two functions:

To analyze a set of chemical reactions written in a similar chemist’s language. Rate
coefficients can be constants or functions of external and/or internal parameters to
take in account the outside influence on kinetics. After syntaxical analysis, the compila-
tion gives the rate equations associated to the input like chemical system (application
of the algorithm A1l). Conversely, this subset can propose the associated like chemical
system of an input set of differential equations, if it is possible (Algorithm A2).

Using two distinct buffers to store chemical system and differential equations, all
change of a part, or of the totality, of one buffer is possible. Then the changed system
can be, a new time, analyzed by the processor for differential or chemical system gener-
ation, and so on.

(if). The second one is usable to obtain the numerical solution of a differential system
with given initial conditions, the method of integration is chosen by the user. Post
fixed forms of the right hand sides of the differential equations are used for the compu-
tation, they are automatically generated when this subset is called.

Bounded methods used need the knowledge of partial derivatives of right hand sides
of the equations, we have chosen to use a formal derivator subroutine for this purpose.
Hence, the evaluation of Jacobian matrix is easy with a good precision.

The subsets, all the functions of these subsets, and input output functions need at
any level of an analyze are called using a simple command language.

The program is written FORTRAN 1V, so it can be used on many computers.
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DISCUSSION :

In order to present a practical discussion on the use of such a procedure in model
analysis, we shall present a simple example of a biological process.

Experimental data of Prudhomme [11] are considered. They concern RNA popula-
tions in the silk gland of the silkworm.

During the last larval instar, the gland activity is principally oriented to produce
silk proteins. However, it is well known that proteins synthesis is intracellular RINA-
dependent. So this author has studied the evolution of the rate of RNA, in the gland
cells during the last instar of the worm. Experimental results are plotted in Fig. 1.

The curve shape seems to a graphical representation of a solution of Kostitzin—
Volterra equation [2], whose analytical expression is:

t

d
A ag — bg? — cqf q(u) du, (16)
dr 0
where g represents RNA rate; a, b, ¢, are positive constants.

Using an original optimization procedure, [2] estimations of parameters was found:

a=068 b=29910"2 ¢=13610"2

The computer simulation performed with the numerical subset of our program has
given the results plotted in Fig. 1. Comparing the experimental results we may consider
that the Kostitzin—Volterra model is a good description of the experiments.

In reality, this model had been proposed after speculative assumptions on growth
mechanisms occurring in a population. But the field of original applications (ecology)
and the discursive expression of the hypotheses don’t give a synthetic picture of the
mechanisms, especially for the non mathematician. Observing that equation (16) can
be set into the following differential form:

d
d—f= ag — bg* — ciqf

d
A (13)

with ¢ = ¢; " ¢;.
Using algorithm A, we have found the like chemical system:

g3 2 (i)
q 22, f+ q (i1)
q+f=f (iii)

=N ol

X IO—"gm
/

@,

L ® Experimental
B / — Simulated

Time
Fig. 1.
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Reaction (i) looks an autoreproductive limited mechanism for the RNA. But it is
well known that the RNA is not autoreproductive. In fact, the RNA is copied on
an autoreproductive molecule: the DNA. And this reaction summarizes these two mech-
anisms.

Reaction (ii) represents the production of a compound f which in (iii) interacts with
q to degrade it. Other experimental results suggest that f represents an RNA degrada-
tive enzyme called RNAase.

So the complete study of this model allows to say that a continuous evolution of
all involved components can explain the experimental results (ie. it is not necessary
to introduce discrete regulation mechanisms as it is often proposed, particularly for

the production of RNAase).
 We have proposed a relatively simple model which summarizes correctly the experi-
mental data. The analysis in terms of like chemical system gives us explicable mechanism
of the RNA evolution in the silkgland. In fact, we must note that, on speculative
assamptions and with the known biochemical mechanisms, it could be possible to pro-
pose more elaborate models of this situation. But, such models are generally so complex
that their practical use is difficult (for example, it is not easy to have estimations of
parameters from necessary limited data). Now it is obvious that such a program permits
to work on complex forms. Such an easiness may induce the user to complicate his
model perhaps too much in respect with the experimental results. So, a computer aided
design program must be used with a good comprehension of model analysis or model
building.

This observation is generally available for many situations in systems analysis. Observ-
ing a “natural” system we are interested on some aspects of this system. Hence the
level of analysis of a system is defined on speculative choices or determined by experi-
mental approach. Then the level of modelisation must be chosen in the same order
of the defined system (for example kinetics models in chemistry use a particular set
of models, they do not integrate explicitly complex models of ondulatory mechanics).
So, one must distinguish the “natural” system, the effectively studied system after integ-
ration, the discursive or formal description of the system (description model) and the
mathematical model.

Finally, always in the goal of an aid for modelling, future developments of our work
may be forecasted:

a subset of optimization, as a generalization of that used in our example;
an heuristic routine, which can propose one, or maore than one, model from experimental
results, under defined constraints.

So, we think that such a program can be seen not only as an aid for modelling
in a necessary limited field, but also as an approach for a methodology to be developed
in the future, eventually using the results of the studies in the field of artificial intelli-
gence.

SUMMARY

With. some extensions, kinetics models of chemical systems have a great interest in
other fields than chemistry, particullary in ecology and biology.

If we assume that general hypothesis of chemical kinetics models can be accepted
for a particular system, at first we must describe the particles interaction  for this purpose
we can use a description language which can be considered as a representation of
the system behaviour, since the mathematical expressions of the rate equations are avail-
able. Conversely it is possible to suggest a mechanism of interactions from a mathemati-
cal model (i.e. differential equations).

We show that a mathematical expression of like chemical systems permits to draw
up easily a generation algorithm (A1) of the associated rate equations, and a descriptive
chemical system can be obtained from a set of differential equations with a converse
algorithm (A2).
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Using the example of enzyme action, the problem of numerical simulation is studied.
All these levels have been integrated in a general computer program which can be
seen as a tool for modelling.

Around a biological example, we discuss of the use of such a procedure for models
study. For this purpose experimental data of the evolution of RNA in the silk gland
of the silkworm are considered. Such an evolution can be described by the Kostitzin-Vol-
terra model. Parameters estimation and numerical simulation is possible with the algor-
ithm (Al), and also a mechanism of this phenomenon is proposed by the algorithm
(A2).

So we think that such an analyze of an experimental situation can be generalized,
not only in the field of kinetics determinist models, but also in systems analysis, using
other ways for mathematical modelling.
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